DATA SHEET

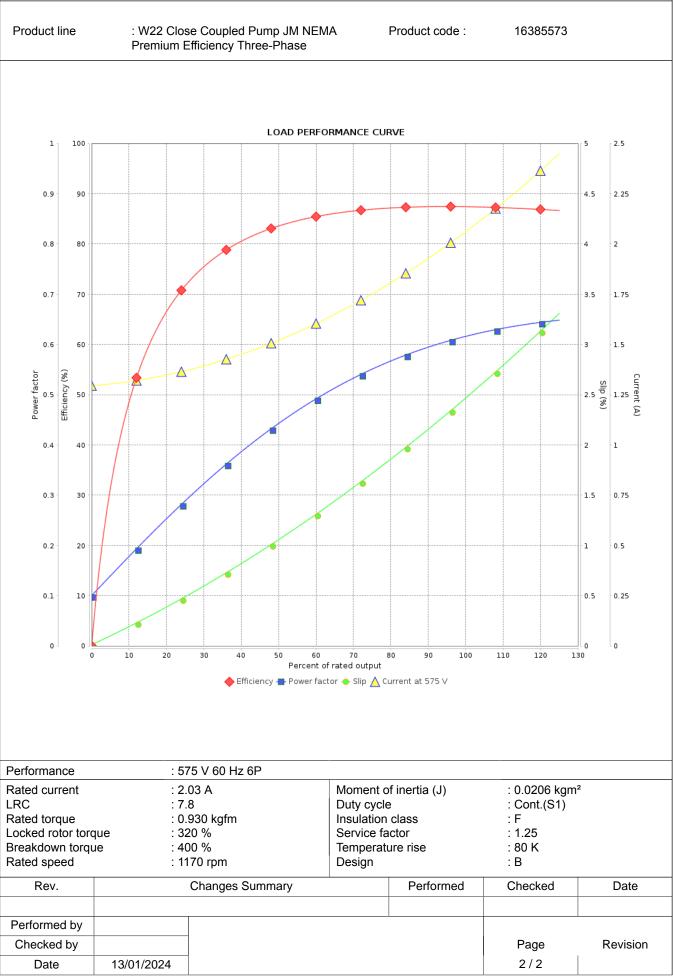
Three Phase Induction Motor - Squirrel Cage

:

Customer

		n Efficiency	y Three-Pha	ase				
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (J) Design		: 182/4JM : 1.5 HP (1.1 kW) : 6 : 60 Hz : 575 V : 2.03 A : 15.8 A : 7.8x(Code M) : 1.30 A : 1170 rpm : 2.50 % : 0.930 kgfm : 320 % : 400 % : F : 1.25 : 0.0206 kgm ² : B			Locked rotor time Temperature rise Duty cycle Ambient temperature Altitude Protection degree Cooling method Mounting Rotation ¹ Noise level ² Starting method Approx. weight ³		: 28s (cold) 16s (hot) : 80 K : Cont.(S1) : -20°C to +40°C : 1000 m.a.s.l. : IP55 : IC411 - TEFC : F-1 : Both (CW and CCW) : 52.0 dB(A) : Direct On Line : 42.1 kg	
Output	50%	75%	100%		Foundat	ion loads		
Efficiency (%) Power Factor	84.0 0.45	86.5 0.54	87.5 0.62		Max. tra		: 57 kgf : 99 kgf	
_osses at norma	tive operating p	oints (spe	ed;torque),	in perce	ntage of r	ated output power		
P1 (0,9;1,0)	P2 (0,5;1,0)		0,25;1,0)		,9;0,5)	P5 (0,5;0,5)	P6 (0,5;0,25)	P7 (0,25;0,25)
13.4	10.3		9.3	8	.8	5.8	4.8	3.5
Lubrication inter						V'Ring		
Lubricant amour Lubricant type lotes: his revision repl nust be eliminate 1) Looking the n 2) Measured at 3) Approximate	nt : Iaces and canc ed. notor from the s 1m and with tol weight subject	shaft end. erance of	+3dB(A).	Mol		-		
This revision repl nust be eliminate 1) Looking the n 2) Measured at 3) Approximate manufacturing pr 4) At 100% of fu Rev.	Iaces and canced. Inotor from the solution of	shaft end. erance of to changes	+3dB(A).	Mol	These a power s	EM		
Lubricant amour Lubricant type Notes: This revision repl nust be eliminate 1) Looking the n 2) Measured at 3) Approximate nanufacturing pr 4) At 100% of fu	Iaces and canced. Inotor from the solution of	shaft end. erance of to changes	+3dB(A). s after	Mol	These a power s	EM	ne tolerances stip	ulated in NEMA

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice


LOAD PERFORMANCE CURVE

Three Phase Induction Motor - Squirrel Cage

Customer

:

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice