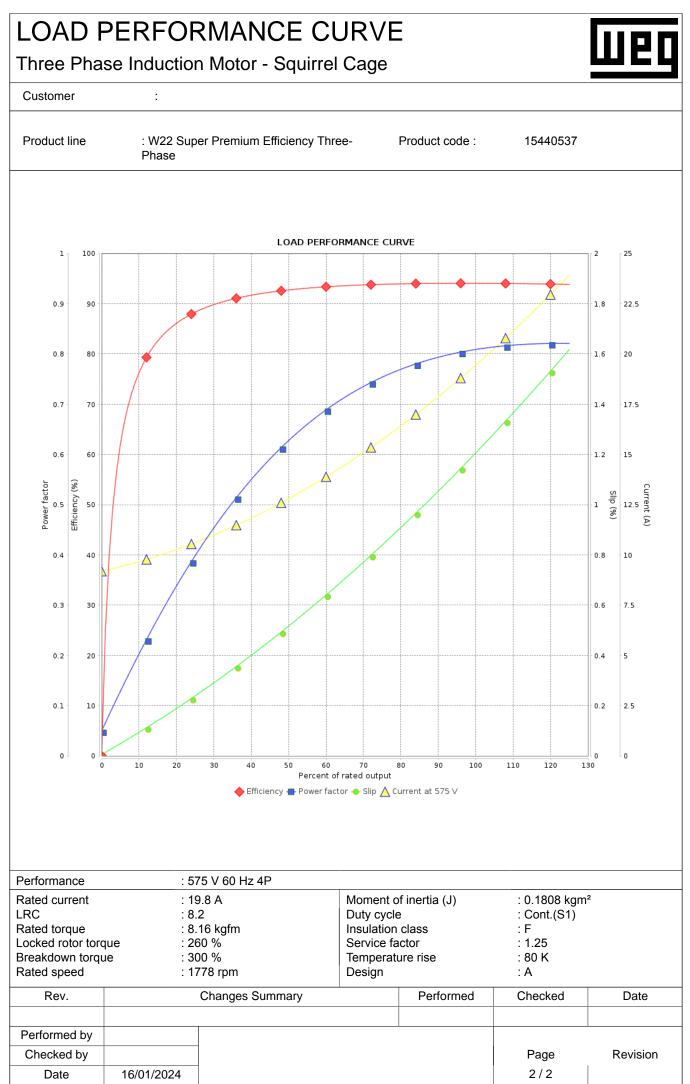
DATA SHEET

:


Three Phase Induction Motor - Squirrel Cage

Customer

	Phase		ncy Thre	e-	Product code :	15440537	
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (J) Design		: 254/6T : 20 HP (15 kW) : 4 : 60 Hz : 575 V : 19.8 A : 162 A : 8.2x(Code K) : 9.20 A : 1778 rpm : 1.22 % : 8.16 kgfm : 260 % : 300 % : F : 1.25 : 0.1808 kgm ² : A		Locked rotor time Temperature rise Duty cycle Ambient temperature Altitude Protection degree Cooling method Mounting Rotation ¹ Noise level ² Starting method Approx. weight ³		: 36s (cold) 20s (hot) : 80 K : Cont.(S1) : -20°C to +40°C : 1000 m.a.s.l. : IP55 : IC411 - TEFC : F-1 : Both (CW and CCW) : 64.0 dB(A) : Direct On Line : 168 kg	
Output	50%	75% 100%		Foundat	ion loads		
Efficiency (%) Power Factor	93.0	93.6 94.1 0.75 0.81		Max. tra		: 301 kgf : 469 kgf	
Losses at norma	tive operating poi	ints (speed;torque),	in nerce	ntage of r	ated output power		
P1 (0,9;1,0)	P2 (0,5;1,0)	P3 (0,25;1,0)		,9;0,5)	P5 (0,5;0,5)	P6 (0,5;0,25)	P7 (0,25;0,25)
6.1	4.7	4.2		9.5	2.3	1.7	1.1
Sealing Lubrication inter Lubricant amour		V'Ring 20000 I 13 g	ı		V'Ring 20000 h 9 g		
			Мо	bil Polyre>			
must be eliminate (1) Looking the m (2) Measured at	ed. notor from the sha 1m and with toler weight subject to rocess.	ance of +3dB(A).	/hich	These a			
This revision repl nust be eliminate 1) Looking the m 2) Measured at 3) Approximate manufacturing pr 4) At 100% of fu	ed. notor from the sha 1m and with toler weight subject to rocess.	aft end. ance of +3dB(A). changes after	/hich	These a power s	The average values supply, subject to the supply is the su	e tolerances stipu	ulated in NEMA
This revision repl nust be eliminate 1) Looking the m 2) Measured at 3) Approximate manufacturing pr 4) At 100% of fu Rev. Performed by	ed. notor from the sha 1m and with toler weight subject to rocess.	aft end. ance of +3dB(A). changes after	/hich	These a power s	The average values supply, subject to the supply is the su	e tolerances stipu	ulated in NEMA
This revision repl nust be eliminate 1) Looking the m 2) Measured at 3) Approximate nanufacturing pr 4) At 100% of fu Rev.	ed. notor from the sha 1m and with toler weight subject to rocess.	aft end. ance of +3dB(A). changes after	/hich	These a power s	The average values supply, subject to the supply is the su	e tolerances stipu	ulated in NEMA

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice