DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer

		ency Three-Ph	oof NEMA Premiu lase	m Product o	code :	12697748	
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor tor Breakdown torq Insulation class Service factor Moment of inert Design	que	: 364/5TC : 60 HP (44 : 4 : 60 Hz : 575 V : 54.6 A : 382 A : 7.0x(Cod : 17.6 A : 1780 rpm : 1.11 % : 24.5 kgfm : 250 % : 250 % : F : 1.15 : 0.8767 kg : B	e H) 1	Locked rotor time Temperature rise Duty cycle Ambient tempera Altitude Protection degre Cooling method Mounting Rotation ¹ Noise level ² Starting method Approx. weight ³	ature	: 36s (cold) : 80 K : Cont.(S1) : -20°C to + : 1000 m.a. : IP55 : IC411 - TF : F-1 : Both (CW : 75.0 dB(A : Direct On : 470 kg	+40°C .s.l. EFC and CCW)
Output	50%	75%	100%	Foundation loads			
Efficiency (%)	94.1	94.5	95.0	Max. traction		: 452 kgf	
Power Factor	94.1 0.72	94.5 0.82	0.87	Max. compression		: 922 kgf	
Lubrication inter Lubricant amou		:	9789 h 27 g	ç	9789 h 27 g		
Lubricant type Notes		:		obil Polyrex EM	21 9		
	ed. notor from th 1m and with weight subje rocess.	ne shaft end. tolerance of +	ous one, which 3dB(A).	These are averag power supply, sub MG-1.	e values t		
Notes Notes This revision rep must be eliminat (1) Looking the r (2) Measured at (3) Approximate manufacturing p	ed. notor from th 1m and with weight subje rocess.	ne shaft end. tolerance of + ect to changes	ous one, which 3dB(A).	These are averag power supply, sub	e values t ject to the		
Notes This revision rep must be eliminat (1) Looking the r (2) Measured at (3) Approximate manufacturing pi (4) At 100% of fu	ed. notor from th 1m and with weight subje rocess.	ne shaft end. tolerance of + ect to changes	ous one, which 3dB(A). after	These are averag power supply, sub MG-1.	e values t ject to the	e tolerances stipu	lated in NEMA
Notes Notes This revision rep must be eliminat (1) Looking the r (2) Measured at (3) Approximate manufacturing pr (4) At 100% of fu Rev.	ed. notor from th 1m and with weight subje rocess.	ne shaft end. tolerance of + ect to changes	ous one, which 3dB(A). after	These are averag power supply, sub MG-1.	e values t ject to the	e tolerances stipu	lated in NEMA

 Date
 22/10/2023
 1 / 3

 This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice

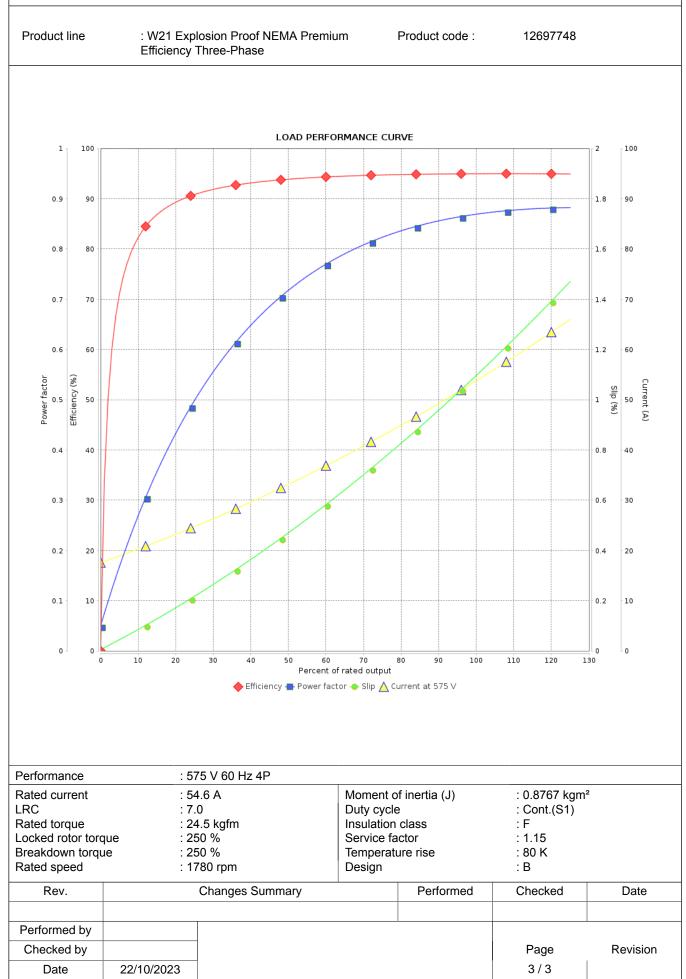
DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer

ID	Application	Туре	Quantity	Sensing	Temperature
1	Winding	Thermostat - 2 wires	1 x Phase		55 °C
-					
,					
Rev.	Change	es Summary	Performed	Checked	Date
erformed by					
Checked by				Page	Revision
Date	22/10/2023			Page 2/3	1724191011



LOAD PERFORMANCE CURVE

Three Phase Induction Motor - Squirrel Cage

:

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice