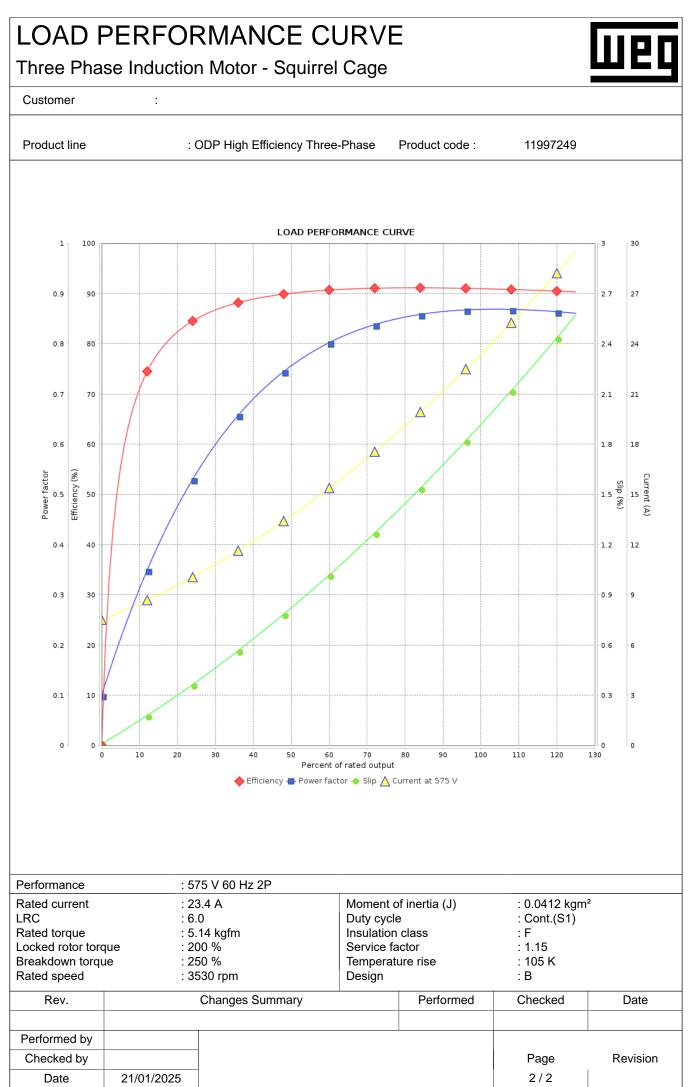
DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:


Customer

		. ODF Hig	h Efficiency Three-I	Phase Product code :	11997249	
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor tor Breakdown torq Insulation class Service factor Moment of inerti	ue	: 256TC : 25 HP (1 : 2 : 60 Hz : 575 V : 23.4 A : 141 A : 6.0x(Coo : 7.52 A : 3530 rpm : 1.94 % : 5.14 kgfr : 200 % : 250 % : F : 1.15 : 0.0412 k	e G) 1 n	Locked rotor time Temperature rise Duty cycle Ambient temperature Altitude Protection degree Cooling method Mounting Rotation ¹ Noise level ² Starting method Approx. weight ³	: 18s (cold) 7 : 105 K : Cont.(S1) : -20°C to +4 : 1000 m.a.s : IP23 : IC01 - ODF : F-1 : Both (CW a : 67.0 dB(A) : Direct On L : 103 kg	and CCW)
Design		: B	5			
Output Efficiency (%) Power Factor	50% 90.2 0.76	75% 91.0 0.84	100% 91.0 0.87	Foundation loads Max. traction Max. compression	: 150 kgf : 254 kgf	
Bearing type Sealing Lubrication inter Lubricant amoun Lubricant type		Wit	6309 Z C3 62 Without Bearing Seal Without		drive end 09 Z C3 Bearing Seal 0000 h 9 g	
This revision replaces and cancel the previous one, which must be eliminated. (1) Looking the motor from the shaft end. (2) Measured at 1m and with tolerance of +3dB(A). (3) Approximate weight subject to changes after manufacturing process. (4) At 100% of full load.				These are average values based on tests with sinusoidal power supply, subject to the tolerances stipulated in NEMA MG-1.		
must be eliminat (1) Looking the n (2) Measured at (3) Approximate manufacturing pr	ed. notor from the 1m and with to weight subject ocess.	shaft end. blerance of	+3dB(A).	power supply, subject t		
must be eliminat (1) Looking the n (2) Measured at (3) Approximate manufacturing pr	ed. notor from the 1m and with to weight subject ocess.	shaft end. blerance of t to changes	+3dB(A).	power supply, subject t	o the tolerances stipu	
nust be eliminat 1) Looking the n 2) Measured at 3) Approximate nanufacturing pr 4) At 100% of fu	ed. notor from the 1m and with to weight subject ocess.	shaft end. blerance of t to changes	⊦3dB(A). ∋ after	power supply, subject t MG-1.	o the tolerances stipu	lated in NEMA
nust be eliminat 1) Looking the n 2) Measured at 3) Approximate nanufacturing pr 4) At 100% of fu Rev.	ed. notor from the 1m and with to weight subject ocess.	shaft end. blerance of t to changes Change	⊦3dB(A). ∋ after	power supply, subject t MG-1.	o the tolerances stipu	lated in NEMA

Шер

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice