DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer

		,	ase			
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torqu Breakdown torqu Insulation class Service factor Moment of inertia Design	ie	: 444/5T : 125 HP : 4 : 60 Hz : 575 V : 111 A : 756 A : 6.8x(Cod : 36.0 A : 1785 rpm : 0.83 % : 50.8 kgfm : 200 % : 220 % : F : 1.15 : 2.41 kgm : B	1	Locked rotor time Temperature rise Duty cycle Ambient temperature Altitude Protection degree Cooling method Mounting Rotation ¹ Noise level ² Starting method Approx. weight ³	: 75s (cold) : 80 K : Cont.(S1) : -20°C to + : 1000 m.a. : IP55 : IC411 - TE : F-1 : Both (CW : 76.0 dB(A : Direct On : 901 kg	40°C s.l. EFC and CCW)
Output	50%	75%	100%	Foundation loads		
Efficiency (%)	94.3	95.2	95.4	Max. traction	: 527 kgf	
Power Factor	94.5 0.75	0.82	0.85	Max. compression	: 1428 kgf	
Lubrication interv Lubricant amoun Lubricant type Notes		: :	8033 h 28 g Mc	8569 h 34 g obil Polyrex EM		
This revision repla must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro (4) At 100% of ful	ed. lotor from th Im and with weight subje ocess.	e shaft end. tolerance of +	3dB(A).	These are average value power supply, subject to MG-1.		
must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro	ed. lotor from th Im and with weight subje ocess.	e shaft end. tolerance of + ect to changes	3dB(A).	power supply, subject to		
must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro (4) At 100% of ful	ed. lotor from th Im and with weight subje ocess.	e shaft end. tolerance of + ect to changes	3dB(A). after	power supply, subject to MG-1.	the tolerances stipu	lated in NEMA

 Date
 22/10/2023
 1 / 3

 This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice

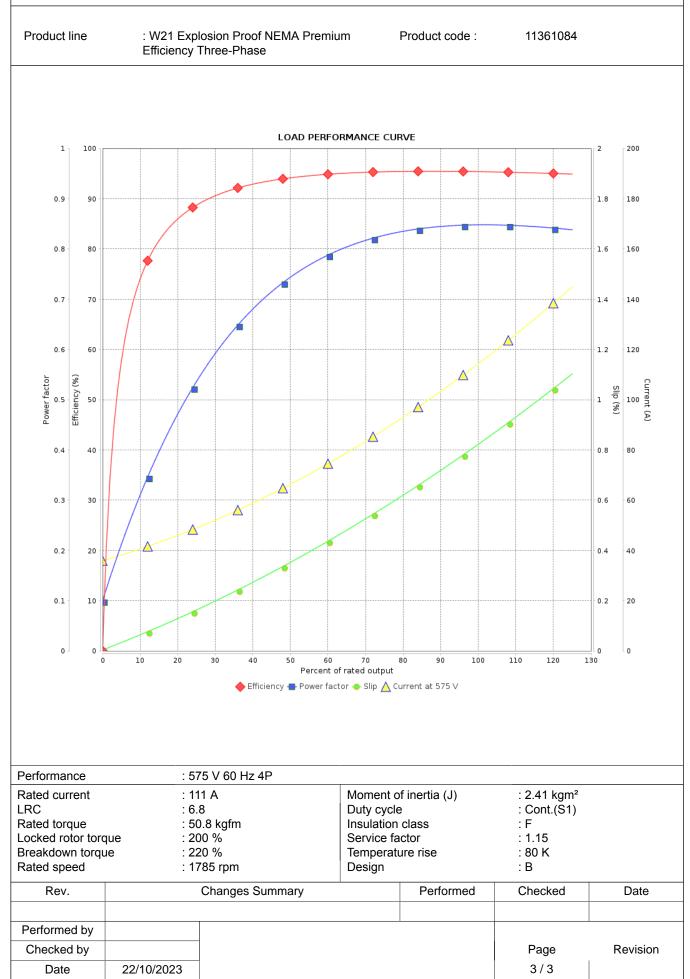
DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer

ID	Application	Туре	Quantity	Sensing	Temperature
1	Winding	Thermostat - 2 wires	1 x Phase		55 °C
-					
,					
Rev.	Change	es Summary	Performed	Checked	Date
erformed by					
Checked by				Page	Revision
Date	22/10/2023			Page 2/3	1724191011



LOAD PERFORMANCE CURVE

Three Phase Induction Motor - Squirrel Cage

:

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice