DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer

		ency Three-Pt	oof NEMA Premiu nase	m Product code	: 11360971	
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torqu Breakdown torqu Insulation class Service factor Moment of inertia Design	ie	: 404/5T : 100 HP (: 4 : 60 Hz : 575 V : 90.4 A : 651 A : 7.2x(Cod : 31.2 A : 1780 rpm : 1.11 % : 40.8 kgfm : 270 % : 280 % : F : 1.15 : 1.11 kgm : B	e H) n	Locked rotor time Temperature rise Duty cycle Ambient temperature Altitude Protection degree Cooling method Mounting Rotation ¹ Noise level ² Starting method Approx. weight ³	: 80 K : Cont.(S1 : -20°C to : 1000 m.a : IP55 : IC411 - T : F-1	+40°C a.s.l. EFC V and CCW) A)
Output	50%	75%	100%	Foundation loads		
Efficiency (%)	94.5	95.0	95.4	Max. traction	: 848 kgf	
Power Factor	0.72	0.82	0.87	Max. compression	: 1398 kgf	
Lubrication interv Lubricant amoun		:	6536 h 21 g	9789 27 g		
Lubricant type Notes		:	Mc	obil Polyrex EM		
	ed. lotor from th Im and with weight subje ocess.	ne shaft end. 1 tolerance of +	ous one, which ·3dB(A).		ues based on tests w	
This revision replanust be eliminate 1) Looking the m 2) Measured at 1 3) Approximate v nanufacturing pro	ed. lotor from th Im and with weight subje ocess.	ne shaft end. n tolerance of + ect to changes	ous one, which ·3dB(A).	These are average value power supply, subject t	ues based on tests w o the tolerances stip	
Notes This revision repla must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro (4) At 100% of ful	ed. lotor from th Im and with weight subje ocess.	ne shaft end. n tolerance of + ect to changes	ous one, which ·3dB(A). after	These are average value power supply, subject to MG-1.	ues based on tests w o the tolerances stip	ulated in NEMA

 Date
 22/10/2023
 1 / 3

 This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice

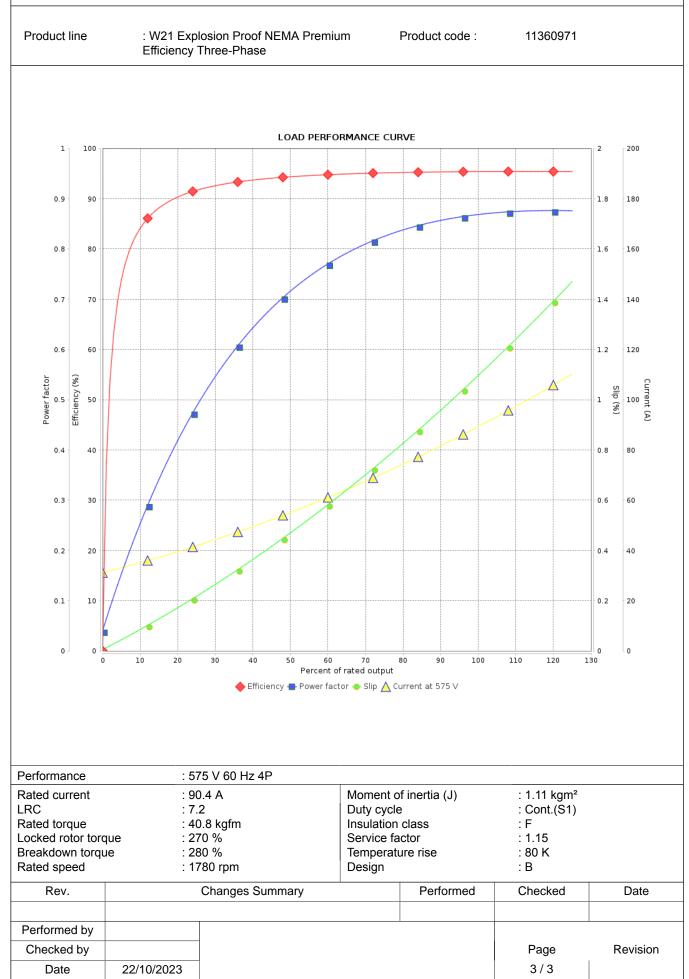
DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer

ID	Application	Туре	Quantity	Sensing	Temperature
1	Winding	Thermostat - 2 wires	1 x Phase		55 °C
-					
,					
Rev.	Change	es Summary	Performed	Checked	Date
erformed by					
Checked by				Page	Revision
Date	22/10/2023			Page 2/3	1724191011



LOAD PERFORMANCE CURVE

Three Phase Induction Motor - Squirrel Cage

:

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice