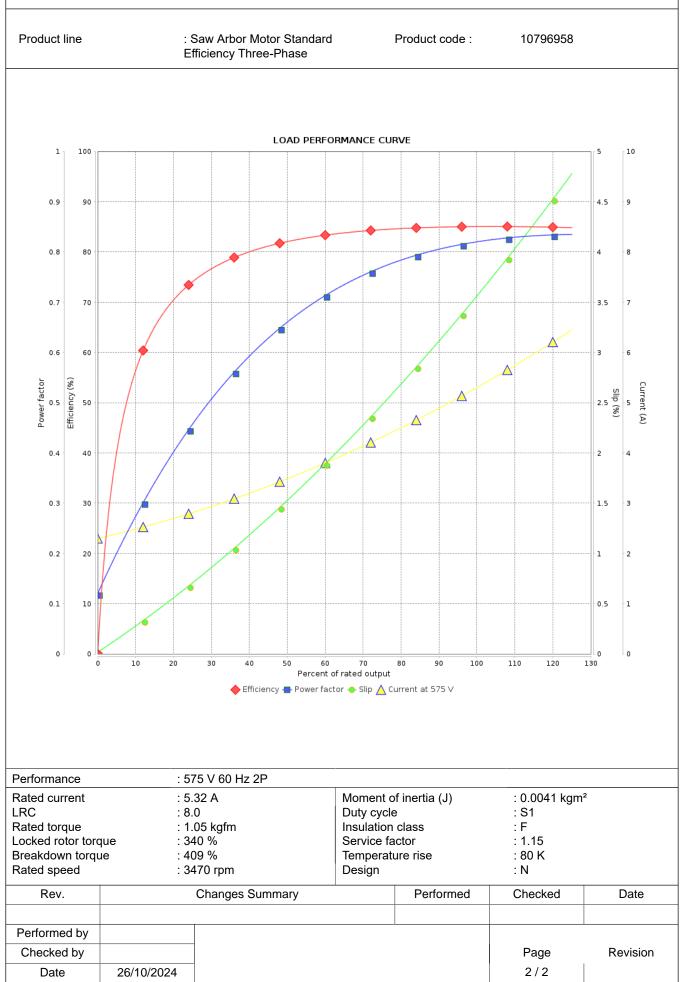
DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer

Product line		: Saw Arbor Motor Standard Efficiency Three-Phase		Product code :	10796958	10796958	
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (J) Design		: 80M/MS : 5 HP (3.7 kW) : 2 : 60 Hz : 575 V : 5.32 A : 42.5 A : 8.0 : 2.30 A : 3470 rpm : 3.61 % : 1.05 kgfm : 340 % : 409 % : F : 1.15 : 0.0041 kgm ² : N		Locked rotor time Temperature rise Duty cycle Ambient temperature Altitude Protection degree Cooling method Mounting Rotation ¹ Noise level ² Starting method Approx. weight ³	: 12s (cold) : 80 K : S1 : -20°C to +4 : 1000 m.a.s : IP54 : IC411 - TE : B3R(D) : CCW : 62.0 dB(A) : Direct On L : 45.0 kg	40°C s.l. FC	
Output	50%	75%	100%	Foundation loads			
Efficiency (%) Power Factor	82.0 0.66	84.5 0.77	85.0 0.82	Max. traction Max. compression	: 67 kgf : 112 kgf		
Bearing type : Sealing : Lubrication interval : Lubricant amount : Lubricant type :			Drive end 6307 ZZ hout Bearing Seal - - Mol	Z 6207 ZZ			
This revision rep must be eliminate (1) Looking the n (2) Measured at (3) Approximate manufacturing pr (4) At 100% of fu	ed. notor from th 1m and with weight subje rocess.	e shaft end. tolerance of +	-3dB(A).	These are average values power supply, subject to th MG-1.			
must be eliminate (1) Looking the n (2) Measured at (3) Approximate manufacturing pr	ed. notor from th 1m and with weight subje rocess.	e shaft end. tolerance of + ect to changes	-3dB(A).	power supply, subject to th			
must be eliminate (1) Looking the n (2) Measured at (3) Approximate manufacturing pr (4) At 100% of fu Rev.	ed. notor from th 1m and with weight subje rocess.	e shaft end. tolerance of + ect to changes	-3dB(A). after	power supply, subject to th MG-1.	e tolerances stipu	lated in NEMA	
must be eliminate (1) Looking the n (2) Measured at (3) Approximate manufacturing pr (4) At 100% of fu	ed. notor from th 1m and with weight subje rocess.	e shaft end. tolerance of + ect to changes	-3dB(A). after	power supply, subject to th MG-1.	e tolerances stipu	lated in NEMA	


LOAD PERFORMANCE CURVE

Three Phase Induction Motor - Squirrel Cage

:

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice