DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer

Product line	Phase						
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor toro Breakdown torqu Insulation class Service factor Moment of inerti	ue	: B56EX : 0.5 HP (0 : 4 : 60 Hz : 575 V : 0.650 A : 4.42 A : 6.8x(Coo : 0.500 A : 1755 rpn : 2.50 % : 0.207 kg : 220 % : 330 % : B : 1.15 : 0.0034 k	le K) n fm	Temper Duty cy Ambien Altitude Protecti Cooling Mountir Rotation Noise le Starting	It temperature ion degree I method ng n ¹	: 27s (cold) : 80 K : Cont.(S1) : -20°C to + : 1000 m.a. : IP44 : IC411 - TE : F-1 : Both (CW : 50.0 dB(A : Direct On : 14.9 kg	-40°C s.l. EFC and CCW)
Output	50%	75%	100%	Foundatio	on loads		
Efficiency (%) Power Factor	70.0 0.52	75.5 0.64	77.5 0.73	Max. trac Max. com		: 14 kgf : 29 kgf	
Sealing Lubrication inter Lubricant amour		: VVit	hout Bearing Sea -	I	Without Bearing -	5691	
Lubricant amou Lubricant type Notes:	11		M	obil Polyrex	EM		
Lubricant type Notes: This revision repl must be eliminate (1) Looking the m (2) Measured at (3) Approximate manufacturing pr	laces and can ed. notor from the 1m and with to weight subjec	shaft end. olerance of +	ious one, which ⊧3dB(A).	These ar	re average values	based on tests wi	
Lubricant type Notes: This revision repl must be eliminate (1) Looking the m (2) Measured at (3) Approximate manufacturing pr	laces and can ed. notor from the 1m and with to weight subjec	shaft end. olerance of + t to changes	ious one, which ⊧3dB(A).	These ar power su	re average values		
Lubricant type Notes: This revision repl must be eliminate (1) Looking the n (2) Measured at (3) Approximate manufacturing pr (4) At 100% of fu Rev.	laces and can ed. notor from the 1m and with to weight subjec	shaft end. olerance of + t to changes	ious one, which +3dB(A). s after	These ar power su	e average values	ne tolerances stipu	lated in NEMA
Lubricant type Notes: This revision repl must be eliminate (1) Looking the m (2) Measured at (3) Approximate manufacturing pr (4) At 100% of fu	laces and can ed. notor from the 1m and with to weight subjec	shaft end. olerance of + t to changes	ious one, which +3dB(A). s after	These ar power su	e average values	ne tolerances stipu	lated in NEMA

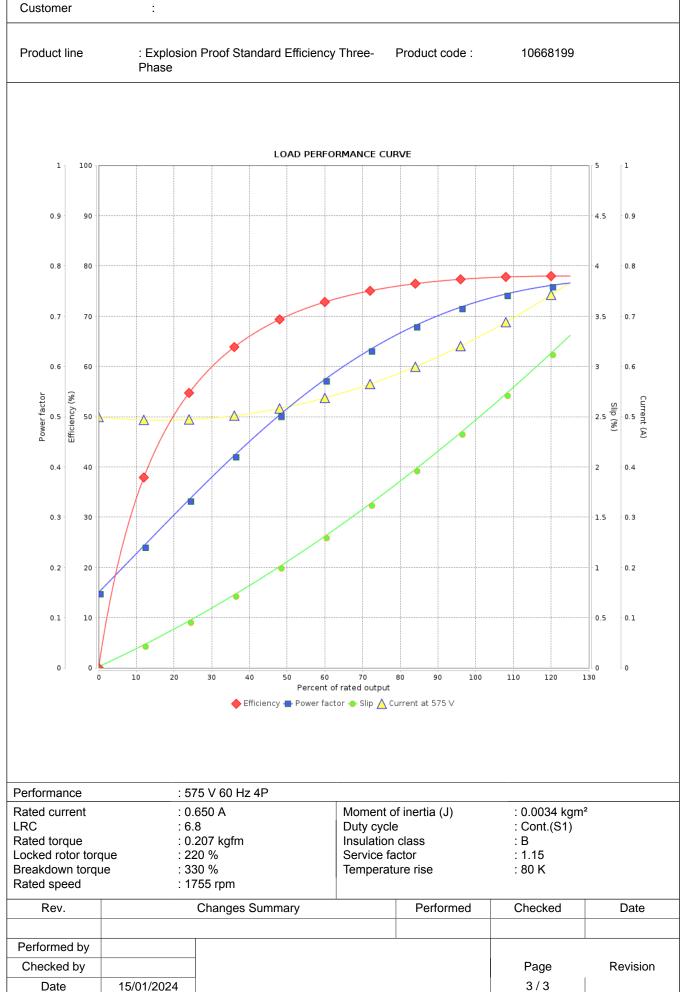
operty c р Subject to change without notice

DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer


ID	Application	Туре	Quantity	Sensing	Temperature
1	Winding	Thermostat - 2 wires	1 x Phase		30 °C
	- ····J				-
Devi	0 1	Summer	Dorforme -	Cheelest	Dete
Rev.	Changes	s Summary	Performed	Checked	Date
erformed by					
Checked by				Page	Revision
Date	15/01/2024			2/3	

LOAD PERFORMANCE CURVE

Three Phase Induction Motor - Squirrel Cage

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice