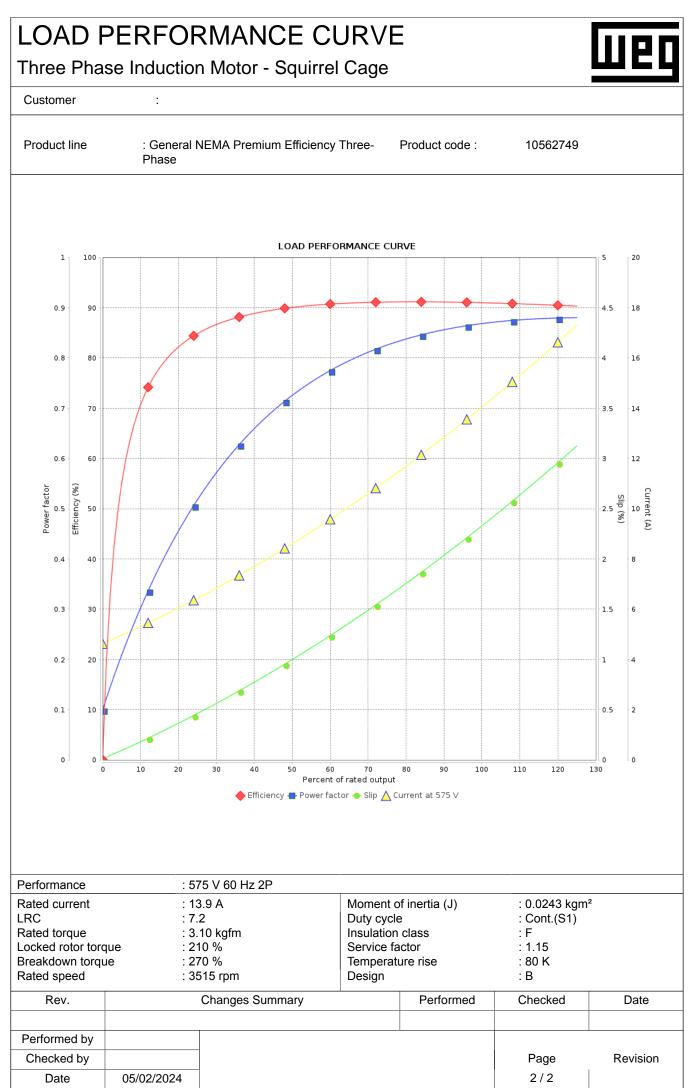
DATA SHEET

Three Phase Induction Motor - Squirrel Cage


:

	Phase		remium Efficiency T	hree- Product code :	10562749	
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor tord Breakdown torqu Insulation class Service factor Moment of inerti Design	ue	: 213/5T : 15 HP (: 2 : 60 Hz : 575 V : 13.9 A : 100 A : 7.2x(Co : 4.64 A : 3515 rpr : 2.36 % : 3.10 kgf : 210 % : 270 % : F : 1.15 : 0.0243 F : B	de H) n m	Locked rotor time Temperature rise Duty cycle Ambient temperature Altitude Protection degree Cooling method Mounting Rotation ¹ Noise level ² Starting method Approx. weight ³	: 16s (cold) : 80 K : Cont.(S1) : -20°C to + : 1000 m.a. : IP21 : IC01 - OD : F-1 : Both (CW : 69.0 dB(A : Direct On : 56.3 kg	-40°C s.l. PP and CCW)
Output	50%	75%	100%	Foundation loads		
Efficiency (%)	90.2	91.0	91.0	Max. traction	: 126 kgf	
Power Factor	0.73	0.82	0.87	Max. compression	: 183 kgf	
Drive end Bearing type : 6208 ZZ Sealing : Without Bearing Seal Lubrication interval : - Lubricant amount : - Lubricant type : Model			<u>Non drive end</u> 6206 ZZ Without Bearing Seal - - bbil Polyrex EM			
This revision repl must be eliminate (1) Looking the m (2) Measured at (3) Approximate manufacturing pr (4) At 100% of fu	ed. notor from the 1m and with t weight subjec rocess.	e shaft end. olerance of	+3dB(A).	These are average values power supply, subject to the MG-1.		
nust be eliminate (1) Looking the n (2) Measured at (3) Approximate manufacturing pr	ed. notor from the 1m and with t weight subjec rocess.	e shaft end. tolerance of ct to change	+3dB(A).	power supply, subject to the		
nust be eliminate 1) Looking the m 2) Measured at 3) Approximate manufacturing pr 4) At 100% of fu Rev.	ed. notor from the 1m and with t weight subjec rocess.	e shaft end. tolerance of ct to change	+3dB(A). s after	power supply, subject to the MG-1.	he tolerances stipu	lated in NEMA
nust be eliminate 1) Looking the m 2) Measured at 3) Approximate manufacturing pr 4) At 100% of fu Rev. Performed by	ed. notor from the 1m and with t weight subjec rocess.	e shaft end. tolerance of ct to change	+3dB(A). s after	power supply, subject to the MG-1.	he tolerances stipu Checked	lated in NEMA
nust be eliminate 1) Looking the m 2) Measured at 3) Approximate manufacturing pr 4) At 100% of fu Rev.	ed. notor from the 1m and with t weight subjec rocess.	e shaft end. colerance of ct to change Change	+3dB(A). s after	power supply, subject to the MG-1.	he tolerances stipu	lated in NEMA

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice