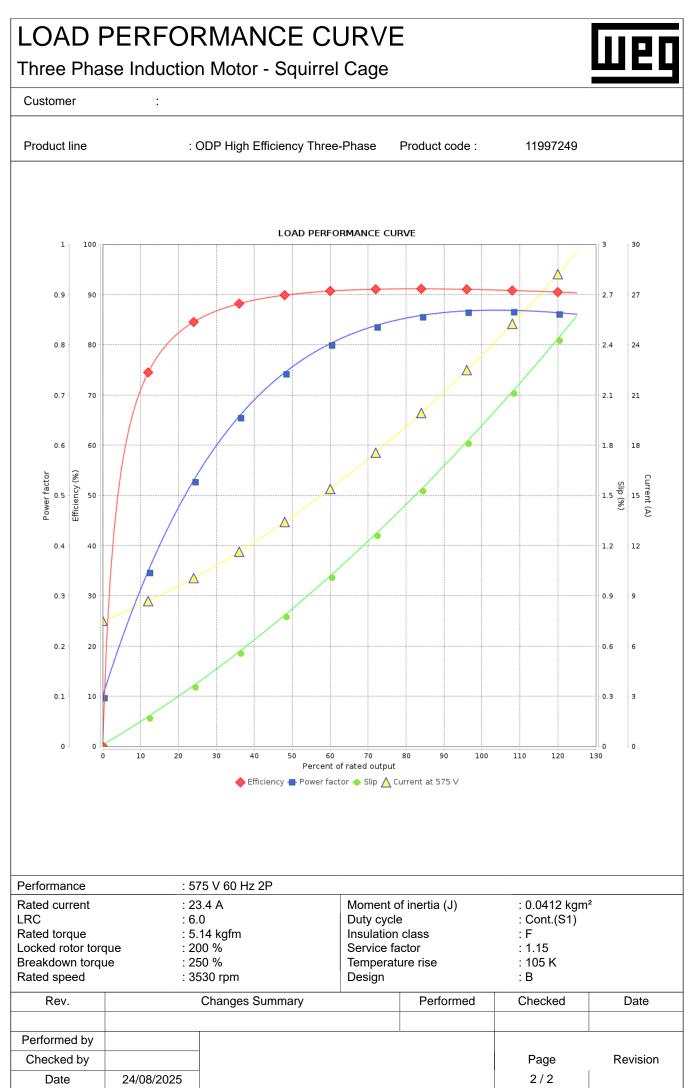
DATA SHEET

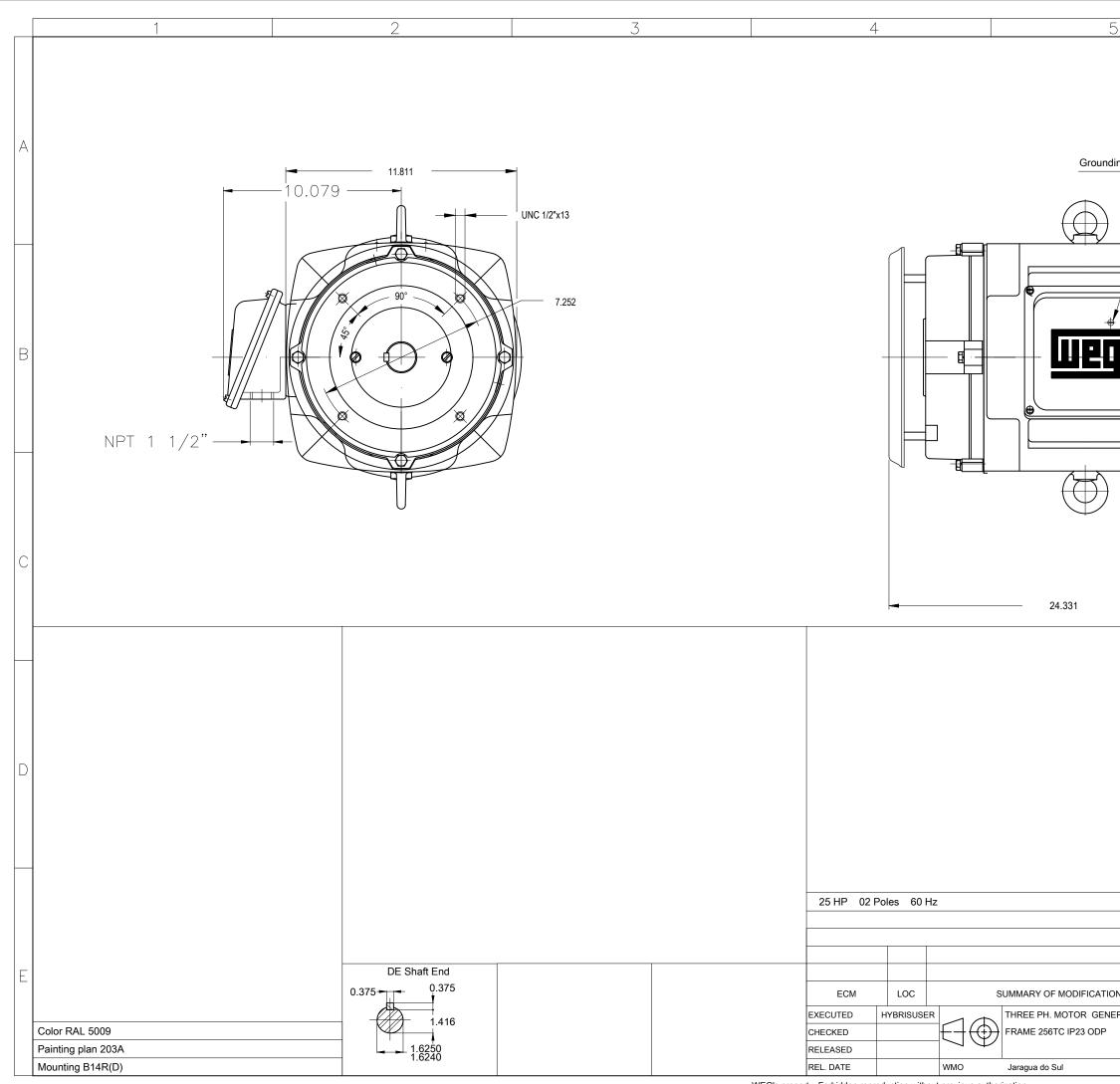
Three Phase Induction Motor - Squirrel Cage

:


Customer

Frame			h Efficiency Three-I			
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (J)		: 256TC : 25 HP (18.5 kW) : 2 : 60 Hz : 575 V : 23.4 A : 141 A : 6.0x(Code G) : 7.52 A : 3530 rpm : 1.94 % : 5.14 kgfm : 200 % : 250 % : F : 1.15 : 0.0412 kgm ²		Locked rotor time Temperature rise Duty cycle Ambient temperature Altitude Protection degree Cooling method Mounting Rotation ¹ Noise level ² Starting method Approx. weight ³	: 18s (cold) 10s (hot) : 105 K : Cont.(S1) : -20°C to +40°C : 1000 m.a.s.l. : IP23 : IC01 - ODP : F-1 : Both (CW and CCW) : 67.0 dB(A) : Direct On Line : 103 kg	
Design		: B	.			
Output Efficiency (%) Power Factor	50% 90.2 0.76	75% 91.0 0.84	100% 91.0 0.87	Foundation loads Max. traction Max. compression	: 150 kgf : 254 kgf	
Bearing type Sealing Lubrication inter Lubricant amour Lubricant type		Drive end : 6309 Z C3 : Without Bearing Seal : 20000 h : 13 g : Mot		<u>Non drive end</u> 6209 Z C3 Without Bearing Seal 20000 h 9 g obil Polyrex EM		
This revision real	aces and ca	ncel the prev	ous one which	These are average value	es based on tests wi	ith sinusoidal
This revision rep must be eliminate (1) Looking the n (2) Measured at (3) Approximate manufacturing pr (4) At 100% of fu	ed. notor from the 1m and with weight subje ocess.	e shaft end. tolerance of ·	-3dB(A).	These are average value power supply, subject to MG-1.		
must be eliminate (1) Looking the n (2) Measured at (3) Approximate manufacturing pr	ed. notor from the 1m and with weight subje ocess.	e shaft end. tolerance of ct to changes	-3dB(A).	power supply, subject to		
nust be eliminate 1) Looking the n 2) Measured at 3) Approximate nanufacturing pr 4) At 100% of fu	ed. notor from the 1m and with weight subje ocess.	e shaft end. tolerance of ct to changes	-3dB(A). after	power supply, subject to MG-1.	the tolerances stipu	lated in NEMA
nust be eliminate 1) Looking the n 2) Measured at 3) Approximate nanufacturing pr 4) At 100% of fu Rev.	ed. notor from the 1m and with weight subje ocess.	e shaft end. tolerance of - ct to changes Change	-3dB(A). after	power supply, subject to MG-1.	the tolerances stipu	lated in NEMA

Шер


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice

WEG's property. Forbidden reproduction without previous authorization.

)			6			
	05 3140 4					
ing for leads 5.2-	25 mm ⁻ / 10-4	AWG				
m	- k					
	╤╋ ┠ ╞ ══┨╢─			4		
⇇┫└║			Ī			
/]		- 0.756				
		- 2.756		D.		
			8.500	8.875		
	╥┚╲╟╴					
				Ĩ		
			Y	T		
ť	⊒₿					
		— 0.250				
	-	4.000 —	-			
		1.000				
			-			
						nches
						ini su
						Dimensions in inches
						Dim
					Α	
	HYBRISUSER				00	
INS	EXECUTED	CHECKED	RELEASED	DATE	VER	
RAL HIGH EFF.		PREVI	FW			
				ШВ		Δ3
Produc	t Engineering	WDD SHEET	00			XMF
FIUUUC			· / ·]	XX