DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer

Product line			blosion Proof NEMA Efficiency Three-Pha		14283706	
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torc Breakdown torqu Insulation class Service factor		213/5T : 3 HP (2.2 : 6 : 60 Hz : 575 V : 3.53 A : 24.7 A : 7.0x(Cod : 2.08 A : 1180 rpm : 1.67 % : 1.85 kgfm : 180 % : 290 % : F : 1.15	2 kW) le K)	Locked rotor time Temperature rise Duty cycle Ambient temperature Altitude Protection degree Cooling method Mounting Rotation ¹ Noise level ² Starting method Approx. weight ³	: 104s (cold : 80 K : Cont.(S1) : -20°C to +4 : 1000 m.a.s : IP55 : IC411 - TE : F-1 : Both (CW : 55.0 dB(A) : Direct On I : 89.4 kg	40°C s.l. FC and CCW)
Moment of inertia Design	a (J)	: 0.0504 kg : B	gm²			
Output	50%	75%	100%	Foundation loads		
Efficiency (%) Power Factor	86.5 0.50	88.5 0.62	89.5 0.70	Max. traction Max. compression	: 53 kgf : 144 kgf	
Sealing Lubrication interv		:	Oil Seal -	Lip Sea -	1	
Lubricant amoun Lubricant type Notes			- Mot	- bil Polyrex EM		
Lubricant amoun Lubricant type	aces and car ed. notor from the Im and with ' weight subject ocess.	e shaft end. tolerance of -	ious one, which +3dB(A).	- bil Polyrex EM		
Lubricant amoun Lubricant type Notes This revision repla must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro	aces and car ed. notor from the Im and with ' weight subject ocess.	e shaft end. tolerance of - ct to changes	ious one, which +3dB(A).	These are average value power supply, subject to		
Lubricant amoun Lubricant type Notes This revision repla must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro (4) At 100% of ful Rev.	aces and car ed. notor from the Im and with ' weight subject ocess.	e shaft end. tolerance of - ct to changes	ious one, which +3dB(A). s after	These are average value power supply, subject to MG-1.	the tolerances stipu	lated in NEMA
Lubricant amoun Lubricant type Notes This revision repla must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro (4) At 100% of ful Rev. Performed by	aces and car ed. notor from the Im and with ' weight subject ocess.	e shaft end. tolerance of - ct to changes	ious one, which +3dB(A). s after	These are average value power supply, subject to MG-1.	the tolerances stipu Checked	ulated in NEMA
Lubricant amoun Lubricant type Notes This revision repla must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro (4) At 100% of ful Rev.	aces and car ed. notor from the Im and with ' weight subject ocess.	e shaft end. tolerance of - ct to changes Change	ious one, which +3dB(A). s after	These are average value power supply, subject to MG-1.	the tolerances stipu	lated in NEMA

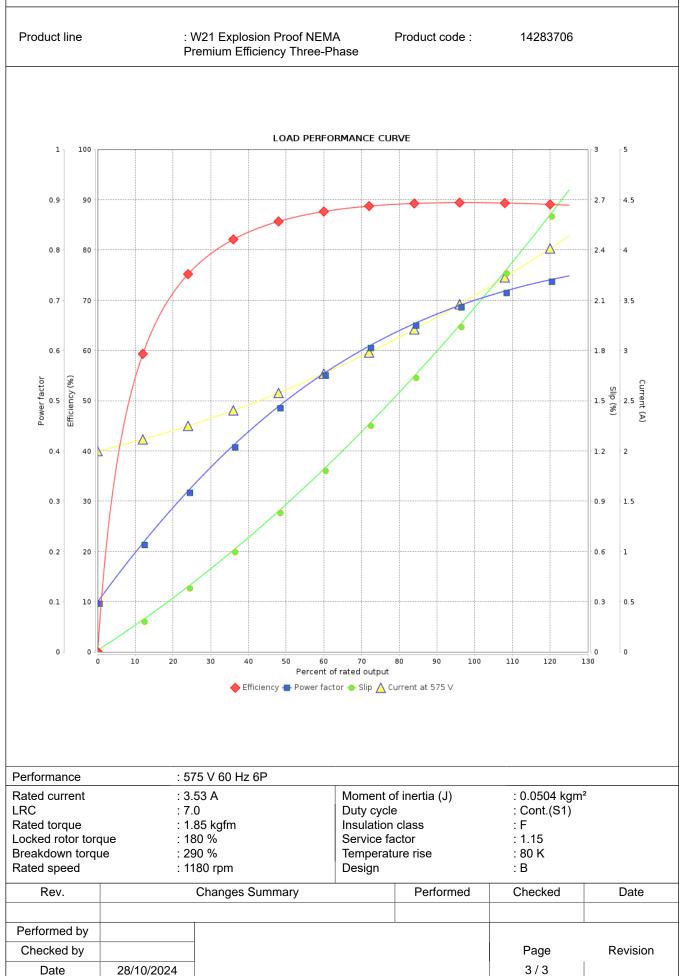
DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer

Thermal protection							
ID 1	Application	Type	Quantity		Temperature		
1	Winding	Thermostat - 2 wires	1 x Phase	1	55 °C		
Rev.	Changes	Summary	Performed	Checked	Date		
Performed by							
Checked by				Page	Revision		
Date	28/10/2024			2/3			



LOAD PERFORMANCE CURVE

Three Phase Induction Motor - Squirrel Cage

:

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice