DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer

Product line				Proof NEMA		Product code :	14232997	
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torc Breakdown torqu Insulation class Service factor Moment of inertia Design	le	: 4 : 60 F : 575 : 2.23 : 19.9 : 8.9x : 1.28 : 175 : 2.78 : 0.82 : 270 : 320 : F : 1.15	P (1.5 kW) Hz V 3 A 9 A ((Code L) 3 A 0 rpm 3 % 29 kgfm % %		Altitude	ture rise le temperature n degree method y vel ² method	: 19s (cold) : 80 K : Cont.(S1) : -20°C to +4 : 1000 m.a.s : IP55 : IC411 - TE : F-1 : Both (CW i : 51.0 dB(A) : Direct On I : 33.1 kg	40°C s.I. FC and CCW)
Output	25%	50%	75%	100%	Foundatio	on loads		
Efficiency (%) Power Factor	82.9 0.32	84.0 0.56	85.5 0.70	86.5 0.78	Max. tract Max. com	tion	: 59 kgf : 92 kgf	
Bearing type Sealing Lubrication interv Lubricant amoun	:	: 6205 2RS : Oil Seal : - : - : Mob			6204 2RS Lip Seal - - bil Polyrex EM			
Lubricant type		:		- Mot	bil Polyrex	EM		
Notes Notes This revision repla must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro	ed. notor from 1m and wit weight sub ocess.	the shaft e th toleranc	end. e of +3dB(A	ne, which	These ar	e average values	s based on tests wi	
Notes Notes This revision repl must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro	ed. notor from 1m and wit weight sub ocess.	the shaft e th toleranc oject to cha	end. e of +3dB(A	ne, which \).	These arr	e average values		
Notes Notes This revision repla must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro (4) At 100% of ful Rev.	ed. notor from 1m and wit weight sub ocess.	the shaft e th toleranc oject to cha	end. e of +3dB(A anges after	ne, which \).	These arr	e average values	ne tolerances stipu	ulated in NEMA
Notes This revision repla must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro (4) At 100% of ful Rev. Performed by	ed. notor from 1m and wit weight sub ocess.	the shaft e th toleranc oject to cha	end. e of +3dB(A anges after	ne, which \).	These arr	e average values	ne tolerances stipu Checked	ulated in NEMA
Notes Notes This revision replanate must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro- (4) At 100% of ful Rev.	ed. notor from 1m and wit weight sub ocess.	the shaft e th toleranc oject to cha Ch	end. e of +3dB(A anges after	ne, which \).	These arr	e average values	ne tolerances stipu	ulated in NEMA

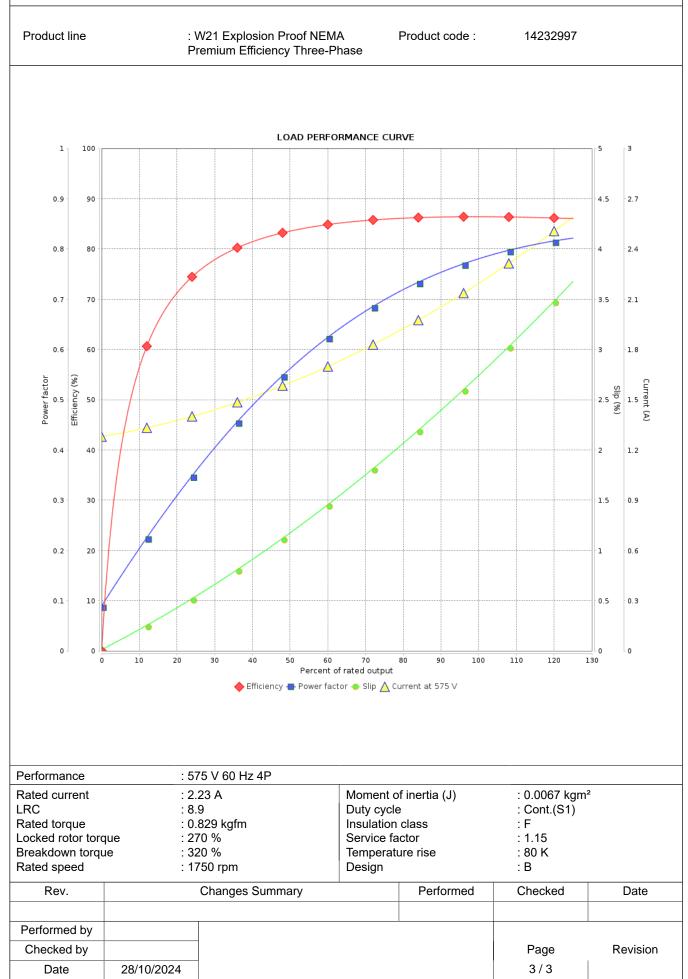
DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer

	Application	Thermal protection	Oursette	0 arraine	sing Temperature	
ID 1	Application	Type	Quantity			
1	Winding	Thermostat - 2 wires	1 x Phase	1	55 °C	
Rev.	Changes	Summary	Performed	Checked	Date	
Performed by						
Checked by				Page	Revision	
Date	28/10/2024			2/3		



LOAD PERFORMANCE CURVE

Three Phase Induction Motor - Squirrel Cage

:

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice